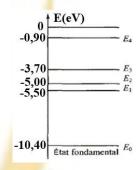

UNIVERSITE LIBANAISE FACULTE DE GENIE

Concours d'entrée 2014 – 2015

PHYSIQUE


Durée: 2H 6 Juillet 2014

Exercice I [18 pts] : Atome de mercure

Données : masse d'un atome de mercure : $m_{Hg} = 3.34 \times 10^{-25} \text{ kg}$; masse d'un électron : $m_e = 9.1 \times 10^{-31} \text{ kg}$; $c = 3.00 \times 10^8 \text{ m/s}$; $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$; $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$.

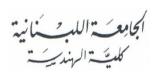
A- Émission et absorption d'un photon

- 1. L'une des radiations visibles émises par une lampe à vapeur de mercure correspond à la transition du niveau d'énergie E_4 au niveau d'énergie E_3 . Calculer la valeur de la longueur d'onde $\lambda_{4/3}$ correspondante.
- 2. Déterminer la valeur de la longueur d'onde de la radiation que peut émettre l'atome de mercure, pris initialement dans l'état d'énergie E₁.
- 3. On considère un atome de mercure pris initialement dans l'état fondamental E_0 . Cet atome reçoit deux photons de longueurs d'onde $\lambda_1 = 253,7$ nm et $\lambda_2 = 589,0$ nm. Y a-t-il une interaction entre l'atome de mercure et chacun de ces deux photons ? Justifier la réponse.

B- Collision entre un électron et un atome de mercure

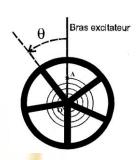
En 1914, Franck et Hertz (prix Nobel en 1925) font une découverte étonnante en bombardant une vapeur de mercure, les atomes étant supposés au repos, avec des électrons d'énergie cinétique E_C réglable de quelques eV.

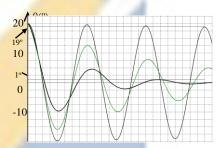
- 1. On considère le cas où E_C est inférieure à un certain seuil, E_S = 4,90 eV, et que la collision est supposée parfaitement élastique.
- a) Montrer que la valeur de la vitesse v_a d'un atome de mercure après la collision est donnée par : $v_a = \frac{2 m_e}{m_e + m_{Hg}} v$; v est la valeur de la vitesse de l'électron juste avant la collision, les vitesses étant supposées colinéaires.
- b) En déduire que l'électron, après la collision, garde pratiquement la même valeur d'énergie cinétique E_C.
- 2. a) Lorsque E_C atteint la valeur $E_C = E_S = 4,90$ eV, l'électron, après la collision, perd pratiquement toute son énergie cinétique. Interpréter ce résultat.
 - b) Pour E_S = 4,90 eV < E_C < 5,40 eV, l'énergie cinétique de quelques électrons, après la collision, diminue précisément de 4,90 eV, les autres électrons conservant leur énergie E_C. Interpréter ce résultat.
- c) Qu'arrive-t-il aux atomes de mercure qui subissent la collision avec des électrons qui ont l'énergie cinétique E_C = 6,00 eV ?


C- Effet photoélectrique

Lorsqu'une photocathode en potassium reçoit successivement deux radiations émises par la lampe à vapeur de mercure, l'une de longueur d'onde $\lambda_1 = 253,7$ nm et l'autre de longueur d'onde $\lambda_2 = 444,0$ nm, on constate que l'énergie cinétique maximale des électrons émis est respectivement de 2,70 eV et 0,60 eV.

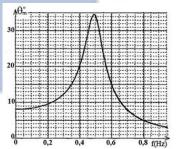
- 1. a) En utilisant la relation d'Einstein et ces données, déterminer la valeur de la constante h de Planck.
 - b) En déduire l'énergie d'extraction W_s des électrons de la photocathode.
- 2. La radiation due à la transition électronique E₃ → E₂ peut-elle contribuer à l'émission d'un photoélectron ? Pourquoi ?


UNIVERSITE LIBANAISE FACULTE DE GENIE

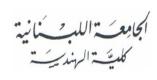

Exercice II [20 pts] : Oscillations libres et forcées (Pendule de Pohl)

Le pendule de Pohl est constitué d'un ressort spiral (R) et d'une roue (D) en cuivre pouvant tourner autour d'un axe fixe horizontal (Δ) passant par son centre O, J étant son moment d'inertie par rapport à (Δ) ; (R), de constante élastique C, est relié d'une part à (D) en O, et, d'autre part au bras excitateur en A. On fait tourner (D) d'un angle θ_0 ($\theta_0 > 0$) à partir de sa position d'équilibre puis, on la lâche sans vitesse à la date $t_0 = 0$. (D) commence à osciller. À une date t, l'élongation angulaire de (D) est θ ; sa vitesse angulaire est $\dot{\theta} = \frac{d\theta}{dt}$ et (R) exerce sur (D) un couple de rappel de moment $\Gamma = -C\theta$, emmagasinant ainsi une énergie potentielle élastique $E_{p\acute{e}} = \frac{1}{2} C\theta^2$, θ étant en rad.

A- Le bras excitateur est fixe.


- 1. a) En appliquant la conservation de l'énergie mécanique du système (pendule-Terre), établir l'équation différ<mark>enti</mark>elle du mouvement du pendule en l'absence de tout amortissement.
- b) La solution de cette équation différentielle est de la forme $\theta(t) = \theta_m \cos(\omega_0 t + \phi)$. Déterminer les expressions des constantes ω_0 et θ_m ainsi que la valeur de ϕ .
- 2. On suppose que (D) est soumis, à une date t, en plus du couple de moment Γ , à un couple de freinage de moment $M_f = -k\dot{\theta}$ où $k = k_0 + \beta I^2$; k_0 et β sont des constantes, où k est réglable par l'intensité I d'un courant qui traverse un système produisant un champ magnétique dans lequel baigne (D) qui sera parcourue par un courant induit (dit "courant de Foucault").
 - a) Énoncer la loi interprétant l'amortissement de (D) par ce courant induit.
- b) Montrer que l'équation différentielle qui décrit le mouvement de (D) s'écrit sous la forme : $\ddot{\theta} + 2\lambda\dot{\theta} + \omega_0^2\theta = 0$, où $\lambda = k/2J$ et $\omega_0 = \sqrt{C/J}$.
- c) La solution de cette équation différentielle est de la forme : $\theta(t) = B e^{-\lambda t} \cos{(\omega t + \Phi)}$, B et Φ étant des constantes et ω la pseudo-pulsation d'expression : $\omega = \sqrt{\omega_0^2 \lambda^2}$. En déduire l'expression de la pseudo-période T
- d) On pose $\delta = \ln\left(\frac{\theta(t)}{\theta(t+T)}\right)$. Montrer que $\delta = \lambda \cdot T$.
- 3. Pour différentes valeurs de I ($I_1 = 0$ A, $I_2 = 0.400$ A puis $I_3 = 0.700$ A), on enregistre les courbes (a) pour I_1 , (b) pour I_2 et (c) pour I_3 . (Voir figure ci-contre).
 - a) Déterminer à partir de la courbe associée à I_2 les valeurs correspondantes de δ_2 et λ_2 .
 - b) La courbe donnant les variations de λ en fonction de I² est portée par une droite.
 - i) Déterminer l'équation donnant λ en fonction de I, sachant que pour $I_1 = 0$ A, on a
 - $\delta_1 = 0.017$ et $\lambda_1 = 0.0085$ s⁻¹ et pour $I_3 = 0.700$ A, on a $\delta_3 = 1.40$ et $\lambda_3 = 0.69$ s⁻¹.
 - ii) En déduire les valeurs de k_0 et β , sachant que $J = 10^{-4} \text{ kg} \cdot \text{m}^2$.
 - c) À partir de quelle valeur de I aurait-on un régime apériodique?

B- Le bras excitateur est mis en mouvement

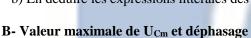

Le bras excitateur est mis en mouvement alternatif sinusoïdal avec une fréquence f réglable. En faisant augmenter f à partir de zéro, et en mesurant l'amplitude θ_m des oscillations pour chaque valeur de f, on obtient le graphique donnant les variations de θ_m en fonction de f.

- 1. Quel phénomène obtient-on pour f proche de 0,5 Hz? Interpréter la réponse.
- 2. Comment varie l'amplitude maximale θ_m (max) des oscillations, quand on augmente I?

UNIVERSITE LIBANAISE FACULTE DE GENIE

Exercice III [22 pts] : Grandeurs électriques maximales et déphasage

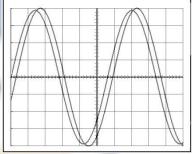
A- Étude théorique


On dispose du circuit schématisé ci-contre. La bobine est d'inductance L=0,16 H et de résistance négligeable ; le condensateur est de capacité C=1,0 μF et le conducteur ohmique est de résistance R réglable. Le générateur (G) présente à ses bornes une tension alternative sinusoïdale u de pulsation ω réglable et d'expression $u=u_{PN}=U_m\sin(\omega t+\phi)$, où $U_m=8,0$ V et $-\pi/2$ rad $<\phi<+\pi/2$ rad.

En régime permanent, le circuit est parcouru, à une date t, par un courant d'intensité i d'expression $i = I_m \sin(\omega t)$ et le condensateur porte ainsi une charge q. Prendre $LC\omega_0^2 = 1$.

- 1. Déterminer, en fonction de t et des données, les expressions littérales des tensions $u_R = u_{BN}$, $u_C = u_{PA}$ et $u_L = u_{AB}$.
- 2. a) Montrer, par application de la loi d'additivité des tensions et en donnant à t deux valeurs particulières,

$$que:tan\phi=\frac{L_{\omega}-\frac{1}{C_{\omega}}}{R}\,et\,\,I_{m}=\frac{U_{m}}{\sqrt{R^{2}+\left(L_{\omega}-\frac{1}{C_{\omega}}\right)^{2}}}.$$


b) En déduire les expressions littérales des amplitudes U_{Cm} et U_{Lm} de u_C et u_L respectivement.

Un voltmètre, en mode AC, est branché aux bornes du condensateur et un oscilloscope, convenablement branché, visualise les tensions u et u_R . On donne à R la valeur $R=250~\Omega$. En faisant augmenter ω , à partir des faibles valeurs, on remarque que U_{Cm} prend une valeur maximale U_{Cm} (max) pour la valeur ω_C de ω . Dans ce cas, la figure ci-contre montre les oscillogrammes des tensions u et u_R .

- 2. Calculer la valeur de I_m et en déduire celle de U_{Cm}(max).
- 3. Déterminer la valeur φ_C de φ .

 $S_V = 2 \text{ V/div}$; $S_h = 0.5 \text{ ms/div}$

C- Valeur maximale de U_{Lm} et déphasage

Le voltmètre, en mode AC, est maintenant branché aux bornes de la bobine. On donne toujours à R la valeur $R=250~\Omega$. En faisant augmenter ω , à partir des faibles valeurs, on remarque que U_{Lm} prend une valeur maximale U_{Lm} (max) pour la valeur ω_L de ω .

- 1. Montrer que $\omega_L = \frac{\omega_0}{\sqrt{1 \frac{R^2 C^2 \omega_0^2}{2}}}$ et calculer sa valeur.
- 2. Calculer la valeur φ_L de φ ainsi que celle de $U_{Lm}(max)$.
- **D-** Comparer ϕ_L et ϕ_C , ainsi que $U_{Cm}(max)$ et $U_{Lm}(max)$ et déterminer la relation entre ω_L , ω_C et ω_0 .

E- Puissance moyenne maximale consommée par le circuit et déphasage

On donne à ω la valeur $\omega = 500 \pi$ rad/s et R est de valeur réglable.

- 1. Donner, en fonction de R et des données, l'expression littérale de la puissance moyenne P consommée par le circuit.
- 2. En faisant varier R, on remarque que la puissance P prend une valeur maximale P₁ pour une valeur R₁ de R.
 - a) Déterminer la valeur de R₁ et celle de P₁.
 - b) Calculer, dans ce cas, la valeur φ_R de φ .

L'énergie du photon émis: $\Delta E = E_4 - E_3 = -0.90 - (-3.70) = 2.80 \text{ eV}$ $\Delta E = 2.80 \times 1.60 \cdot 10^{-19} = 4.48 \cdot 10^{-19} \text{ J}.$	2
	2
**	1.5
initialement dans l'état E ₀ , absorbe le photon et passe au niveau E ₁ .	
Autre méthode : L'énergie du photon reçu: $E = hc/\lambda_1 = 6,63 \ 10^{-34} \times 3 \times 10^8 / 253,7 \times 10^{-9}$	
$E = 7.84 \times 10^{-19} J = 7.84 \times 10^{-19} / 1.60 \times 10^{-19} = 4.90 \text{ eV}.$	
Soit E_n le niveau d'énergie atteint : $\Delta E_1 = E_n - E_0 = E_n - (-10,40) = 4,90 \text{ eV}$	
\Rightarrow E _n = -10,40 + 4,90 = -5,50 eV. Ainsi la transition s'effectue du niveau E ₀ au niveau E ₁ .	
Vue que λ_2 est supérieure à λ_1 , alors $\Delta E_2 < \Delta E_1$, ainsi l'atome ne peut subir une transition, donc pas	
	2.5
$\Rightarrow m_e (v - v') = m_{Hg} v_a. \Rightarrow v - v' = \frac{m_{Hg}}{m} v_a. (1)$	
e	
(3) et (1) \Rightarrow 2v = (1 + $\frac{m_{Hg}}{2}$) v. \Rightarrow v. = $\frac{2 m_e}{2}$ v.	
$m_e / m_e + m_{Hg}$	
$v_a = \frac{2 \times 9.1 \times 10^{-31}}{0.1 \times 10^{-31} \times 2.0 \times 10^{-25}} v \approx 5.5 \times 10^{-6} \text{ v}.$	2
pratiquement la même énergie cinétique.	
Lorsque E_C atteint la valeur $E_C = E_S = 4,90$ eV, un électron, après la collision, perd pratiquement toute son	1
	4 -
	1.5
	1.5
aux niveaux $E_1 = -5,50 \text{ eV}$ et ou $E_2 = -5,00 \text{ eV}$; car $E_C - E_0 = 6,00 - 10,40 = -4,40 \text{ eV} > -5,00 \text{ eV} > -5,50 \text{ eV}$.	
Ainsi, après la collision, un atome de mercure peut passer au niveau E ₁ en absorbant une énergie de 4,90 eV ou	
bien au niveau	
$E_2 = -5,00 \text{ eV}$ en absorbant une énergie de $5,40 \text{ eV}$.	
$E_2 = -5,00 \text{ eV}$ en absorbant une énergie de $5,40 \text{ eV}$. D'après la relation d'Einstein : $E(\text{photon}) = hc/\lambda = W_S + E_C(\text{max})$	2.5
$E_2 = -5,00$ eV en absorbant une énergie de 5,40 eV. D'après la relation d'Einstein : E(photon) = $hc/\lambda = W_S + E_C(max)$ Pour $\lambda_1 = 253,7$ nm, $E_{C1}(max) = 2,70 \times 1,60 \times 10^{-19} = 4,32 \times 10^{-19}$ J	2.5
$\begin{split} E_2 &= -5,00 \text{ eV en absorbant une \'energie de } 5,40 \text{ eV}. \\ D'après la relation d'Einstein : E(photon) &= hc/\lambda = W_S + E_C(max) \\ Pour \lambda_1 &= 253,7 \text{ nm}, E_{C1}(max) = 2,70 \times 1,60 \times 10^{-19} = 4,32 \times 10^{-19} \text{ J} \\ Pour \lambda_2 &= 444 \text{ nm}, E_{C2}(max) = 0,60 \times 1,60 \times 10^{-19} = 0,96 \times 10^{-19} \text{ J} \end{split}$	2.5
$\begin{split} E_2 &= -5,00 \text{ eV en absorbant une \'energie de } 5,40 \text{ eV}. \\ D'après la relation d'Einstein : E(photon) &= hc/\lambda = W_S + E_C(max) \\ Pour \lambda_1 &= 253,7 \text{ nm}, E_{C1}(max) = 2,70 \times 1,60 \times 10^{-19} = 4,32 \times 10^{-19} \text{ J} \\ Pour \lambda_2 &= 444 \text{ nm}, E_{C2}(max) = 0,60 \times 1,60 \times 10^{-19} = 0,96 \times 10^{-19} \text{ J} \\ Ainsi : E_{C1}(max) - E_{C2}(max) = hc[1/\lambda_1 - 1/\lambda_2] = hc[\lambda_2 - \lambda_1]/[\lambda_1 \cdot \lambda_2] \end{split}$	2.5
$\begin{split} E_2 &= 5,\!00 \text{ eV en absorbant une \'energie de } 5,\!40 \text{ eV}. \\ D'après la relation d'Einstein : E(photon) &= \text{hc}/\lambda = W_S + E_C(\text{max}) \\ \text{Pour } \lambda_1 &= 253,\!7 \text{ nm}, E_{C1}(\text{max}) = 2,\!70 \times 1,\!60 \times 10^{-19} = 4,\!32 \times 10^{-19} \text{ J} \\ \text{Pour } \lambda_2 &= 444 \text{ nm}, E_{C2}(\text{max}) = 0,\!60 \times 1,\!60 \times 10^{-19} = 0,\!96 \times 10^{-19} \text{ J} \\ \text{Ainsi : } E_{C1}(\text{max}) - E_{C2}(\text{max}) = \text{hc}[1/\lambda_1 - 1/\lambda_2] = \text{hc}[\lambda_2 - \lambda_1]/[\lambda_1 \cdot \lambda_2] \\ \Rightarrow \text{hc} &= [(4,\!32 \times 10^{-19} - 0,\!96 \times 10^{-19}) \times 253,\!7 \times 10^{-9} \times 444,\!0 \times 10^{-9}]/[444 \times 10^{-9} - 253,\!7 \times 10^{-9}] \end{split}$	2.5
$\begin{split} E_2 &= 5,\!00 \text{ eV en absorbant une \'energie de } 5,\!40 \text{ eV}. \\ D\text{ après la relation d'Einstein : } E(\text{photon}) &= \text{hc}/\lambda = W_S + E_C(\text{max}) \\ \text{Pour } \lambda_1 &= 253,\!7 \text{ nm}, E_{C1}(\text{max}) = 2,\!70 \times 1,\!60 \times 10^{-19} = 4,\!32 \times 10^{-19} \text{ J} \\ \text{Pour } \lambda_2 &= 444 \text{ nm}, E_{C2}(\text{max}) = 0,\!60 \times 1,\!60 \times 10^{-19} = 0,\!96 \times 10^{-19} \text{ J} \\ \text{Ainsi : } E_{C1}(\text{max}) - E_{C2}(\text{max}) &= \text{hc}[1/\lambda_1 - 1/\lambda_2] = \text{hc}[\lambda_2 - \lambda_1]/[\lambda_1 \cdot \lambda_2] \\ \Rightarrow \text{hc} &= [(4,\!32 \times 10^{-19} - 0,\!96 \times 10^{-19}) \times 253,\!7 \times 10^{-9} \times 444,\!0 \times 10^{-9}]/[444 \times 10^{-9} - 253,\!7 \times 10^{-9}] \\ \Rightarrow \text{hc} &= 3,\!785 \times 10^{-32}/190,\!3 \times 10^{-9} = 1,\!989 \times 10^{-25} \Rightarrow \text{h} = 1,\!688 \times 10^{-25}/3,\!00 \times 10^8 = 6,\!63 \times 10^{-34} \text{ J} \cdot \text{s}. \end{split}$	
$\begin{split} E_2 &= 5,\!00 \text{ eV en absorbant une \'energie de } 5,\!40 \text{ eV}. \\ D\text{ apr\'es la relation d'Einstein : E(photon)} &= \text{hc}/\lambda = \text{W}_S + \text{E}_C(\text{max}) \\ \text{Pour } \lambda_1 &= 253,\!7 \text{ nm, E}_{C1}(\text{max}) = 2,\!70 \times 1,\!60 \times 10^{-19} = 4,\!32 \times 10^{-19} \text{ J} \\ \text{Pour } \lambda_2 &= 444 \text{ nm, E}_{C2}(\text{max}) = 0,\!60 \times 1,\!60 \times 10^{-19} = 0,\!96 \times 10^{-19} \text{ J} \\ \text{Ainsi : E}_{C1}(\text{max}) - \text{E}_{C2}(\text{max}) = \text{hc}[1/\lambda_1 - 1/\lambda_2] = \text{hc}[\lambda_2 - \lambda_1]/[\lambda_1 \cdot \lambda_2] \\ \Rightarrow \text{hc} &= [(4,\!32 \times 10^{-19} - 0,\!96 \times 10^{-19}) \times 253,\!7 \times 10^{-9} \times 444,\!0 \times 10^{-9}]/[444 \times 10^{-9} - 253,\!7 \times 10^{-9}] \\ \Rightarrow \text{hc} &= 3,\!785 \times 10^{-32}/190,\!3 \times 10^{-9} = 1,\!989 \times 10^{-25} \Rightarrow \text{h} = 1,\!688 \times 10^{-25}/3,\!00 \times 10^8 = 6,\!63 \times 10^{-34} \text{ J} \cdot \text{s}. \\ \text{Pour } \lambda_1 &= 253,\!7 \text{ nm : E(photon)} = 4,\!90 \text{ eV} \Rightarrow \text{W}_S = 4,\!90 - 2,\!70 = 2,\!20 \text{ eV}. \end{split}$	0.5
$\begin{split} E_2 &= 5,\!00 \text{ eV en absorbant une \'energie de } 5,\!40 \text{ eV}. \\ D\text{ après la relation d'Einstein : } E(\text{photon}) &= \text{hc}/\lambda = W_S + E_C(\text{max}) \\ \text{Pour } \lambda_1 &= 253,\!7 \text{ nm}, E_{C1}(\text{max}) = 2,\!70 \times 1,\!60 \times 10^{-19} = 4,\!32 \times 10^{-19} \text{ J} \\ \text{Pour } \lambda_2 &= 444 \text{ nm}, E_{C2}(\text{max}) = 0,\!60 \times 1,\!60 \times 10^{-19} = 0,\!96 \times 10^{-19} \text{ J} \\ \text{Ainsi : } E_{C1}(\text{max}) - E_{C2}(\text{max}) &= \text{hc}[1/\lambda_1 - 1/\lambda_2] = \text{hc}[\lambda_2 - \lambda_1]/[\lambda_1 \cdot \lambda_2] \\ \Rightarrow \text{hc} &= [(4,\!32 \times 10^{-19} - 0,\!96 \times 10^{-19}) \times 253,\!7 \times 10^{-9} \times 444,\!0 \times 10^{-9}]/[444 \times 10^{-9} - 253,\!7 \times 10^{-9}] \\ \Rightarrow \text{hc} &= 3,\!785 \times 10^{-32}/190,\!3 \times 10^{-9} = 1,\!989 \times 10^{-25} \Rightarrow \text{h} = 1,\!688 \times 10^{-25}/3,\!00 \times 10^8 = 6,\!63 \times 10^{-34} \text{ J} \cdot \text{s}. \end{split}$	
	$ \Delta E = 2,80 \times 1,60 \ 10^{-19} = 4,48 \ 10^{-19} \ J. $ $ \lambda_{4/3} = hc/AE = 6,63 \ 10^{-34} \times 3 \times 10^8/4,48 \times 10^{-19} = 4,440 \times 10^7 \ m \ ou \ 444.0 \ nm \ (violet-indigo). $ $ L'énergie \ du \ photoné mis: \Delta E = E_1 - E_0; \Delta E = -5,50 - (-10,40) = 4,90 \ eV $ $ \Delta E = 4,90 \times 1,60 \times 10^{-19} = 7,84 \times 10^{-19} \ J. $ $ \lambda_{10} = hc/AE = 6,63 \ 10^{-34} \times 3 \times 10^{9/7},84 \times 10^{-19} = 2,537 \times 10^7 \ m = 253,7 \ nm, \ valeur inférieure à 400.0 \ nm, \ donc cette radiation appartient au domaine UV. Pour la longueur d'onde \lambda_1 = 253,7 \ nm, \ elle est émise lors de la transition E_1 \rightarrow E_0, \ donc \ l'atome pris initialement dans l'état E_0, \ absorbe \ le photon \ reçu: E = hc/\lambda_1 = 6,63 \ 10^{-34} \times 3 \times 10^8/253,7 \times 10^9 E = 7,84 \times 10^{-19} \ 1 = 7,84 \times 10^{-19} \ 1 = 7,84 \times 10^{-19} \ 1 = 7,94 \times $

Exercice II : Oscillations libres et forcées (Pendule de Pohl)

A-1-a	Énergie mécanique du système (pendule, Terre) : $E_m = E_C + E_{P\acute{e}} = \frac{1}{2}J\dot{\theta}^2 + \frac{1}{2}C\theta^2$ est constante. En dérivant E_m par rapport au temps, on obtient : $\frac{1}{2}2J\dot{\theta}\ddot{\theta} + \frac{1}{2}2C\dot{\theta}\theta = 0$, avec $\dot{\theta} \neq 0 \Rightarrow$ l'équation différentielle du mouvement du pendule : $\ddot{\theta} + \frac{c}{J}\theta = 0$.	2.5
A-1-b	La solution de l'équation différentielle : $\theta = \theta_m \cos(\omega_0 t + \phi)$; $\dot{\theta} = -\omega_0 \theta_m \sin(\omega_0 t + \phi)$ et $\ddot{\theta} = -\omega_0^2 \theta_m \cos(\omega_0 t + \phi)$. En remplaçant dans l'équation différentielle, on obtient : $-\omega_0^2 \theta_m \cos(\omega_0 t + \phi) + + \frac{c}{J} \theta_m \cos(\omega_0 t + \phi) = 0 \Rightarrow \omega_0^2 = \frac{c}{J} \text{ par suite } \omega_0 = \sqrt{\frac{c}{J}}.$	3
	$\begin{split} \dot{A} \ t_0 &= 0, \ \dot{\theta}_0 = -\omega_0 \theta_m \ sin(\ \phi) = 0 \Rightarrow \phi = 0 \ ou \ \pi \ rad. \\ De \ m\^{e}me, \ \grave{a} \ t_0 &= 0, \ \theta_0 = \theta_m \ cos(\phi) > 0 \Rightarrow \phi = 0 \ et \ \theta_m = \theta_0. \end{split}$	
A-2-a	D'après la loi de Lenz, Énoncé	1.5
A-2-b	D'après le théorème du moment cinétique : $\sum m_O = \frac{\mathrm{d} \sigma}{\mathrm{d} \mathrm{t}} = \mathrm{J} \ddot{\Theta}$,	2.5
	Ainsi: $-C\theta - k\frac{d\theta}{dt} = J\ddot{\theta}$, (les moments du poids et de la réaction de l'axe de rotation sont nuls). $\Rightarrow \ddot{\theta} + \frac{k}{J}\frac{d\theta}{dt} + \frac{C}{J}\theta$	
	= 0. Ainsi, en prenant $\lambda = \frac{k}{2l}$ et $\omega_0^2 = \frac{C}{l}$, l'équation différentielle s'écrit sous la forme : $\ddot{\theta} + 2\lambda \dot{\theta} + \omega_0^2 \theta = 0$.	
A-2-c	La pseudo-période $T = \frac{2\pi}{\omega} = \frac{2\pi}{\left[\omega_0^2 - \lambda^2\right]}$.	0.5
A-2-d	Comme $\delta = \ln \frac{\theta_{\text{m}} \exp(-\lambda t) \cos(\omega t + \phi)}{\theta_{\text{m}} \exp(-\lambda (t+T)) \cos(\omega (t+T) + \phi)} \Rightarrow \delta = \ln \frac{1}{\exp(-\lambda T)}. \Rightarrow \delta = \lambda \cdot T.$	1.5
A-3-a	Pour $I_2 = 0.4$ A, on trouve que $T_2 \approx 2$ s et que $\delta_2 = \ln \frac{20}{12.5} = 0.47$	2
	$\Rightarrow \lambda_2 = \delta_2/T_2 = 0.47/2 = 0.235 \text{ s}^{-1}.$	
A-3-b-	Le graphique de λ en fonction de I^2 est porté par une droite, alors $\lambda = a I^2 + b$.	2
i	$0.69 = a \times 0.7^2 + b \text{ et } 0.235 = a \times 0.4^2 + b \Rightarrow a = 1.38 \text{ A}^{-2} \text{ et } b = 0.014 \text{ s}^{-1}.$	
	Ainsi : $\lambda = 1,38 \times I^2 + 0,014$ (I en A).	
A-3	$\lambda = k/2J$, alors $k = 2J \cdot \lambda \Rightarrow k = 2 \times 10^{-4} \times 14 \times 10^{-3} + 2,76 \times 10^{-4} I^2$. $\Rightarrow k = 2,8 \times 10^{-6} + 2,76 \times 10^{-4} I^2$	1.5
bii	$\Rightarrow k_0 = 2.8 \times 10^{-6} \text{ N·m·s/rad}; \beta = 2.76 \times 10^{-4} \text{ N·m·s/rad·A}^2.$	
A-3-c	Lorsque ω n'existe plus, alors il n'y aura plus d'oscillations \Leftrightarrow pour $\omega_0 = \lambda = 1,38 \text{ I}^2 + 0,014 = 2\pi/T_0 = \pi$. $I^2 = (\pi - 0,014)/1,38 = 2,27 \Rightarrow I = 1,51 \text{ A}$.	1
B-1	Le phénomène obtenu pour f proche de 0,5 Hz est le phénomène de résonance d'amplitude, car, en faisant varier f, l'amplitude passe par un maximum pour une valeur proche de 0,5 Hz.	1
B-2	L'amplitude maximale des oscillations diminue lorsque I augmente, car l'amortissement augmente avec I.	1
		20

Exercice III: Grandeurs électriques maximales et déphasage

A-1	$La \ tension \ u_{BN} = u_R \ aux \ bornes \ du \ conducteur \ ohmique \ est \ : u_{BN} = u_R = R \ i = R \ I_m sin(\omega t)$	3
	On a $i = \frac{dq}{dt}$ et $q = C$ $u_{PA} = C$ $u_C \Rightarrow i = C \frac{du_C}{dt}$. Ainsi: $u_C = \frac{1}{C} \int i \ dt = -\frac{I_m}{C\omega} \cos(\omega t) + cte$ où la cte est nulle car u_C est	
	une fonction alternative sinusoïdale \Rightarrow : $u_C = \frac{I_m}{C_{\omega}}\cos(\omega t + \pi) = \frac{I_m}{C_{\omega}}\sin(\omega t - \frac{\pi}{2})$.	
	$u_{AB} = u_{L} = L \frac{di}{dt} = L\omega I_{m}cos(\omega t) = L\omega I_{m}sin(\omega t + \frac{\pi}{2}).$	
A-2a	D'après la loi d'additivité des tensions ; $u_{PN} = u_{PA} + u_{AB} + u_{BN}$.	3
	$U_{\rm m}\sin(\omega t + \varphi) = \frac{I_{\rm m}}{C\omega}\sin(\omega t - \frac{\pi}{2}) = L\omega I_{\rm m}\sin(\omega t + \frac{\pi}{2}) + R I_{\rm m}\sin(\omega t).$	
	Pour $\omega t = 0 \Rightarrow U_{m} \sin \varphi = -\frac{I_{m}}{C\omega} + L\omega I_{m} + 0 \Rightarrow U_{m} \sin \varphi = (L\omega - \frac{1}{C\omega})I_{m}$. (1)	
	Pour $\omega t = \frac{\pi}{2} \Rightarrow U_m \cos \varphi = 0 + 0 + R I_m \Rightarrow U_m \cos \varphi = RI_m$. (2)	
	$(1)/(2) \Rightarrow \tan \varphi = \frac{L\omega - \frac{1}{C\omega}}{R} ; (1)^2 + (2)^2 \Rightarrow U_m^2 = I_m[R^2 + (L\omega - \frac{1}{C\omega})^2] \Rightarrow I_m = \frac{U_m}{\sqrt{R^2 + (L\omega - \frac{1}{C\omega})^2}}$	
A-2b	Les expressions des amplitudes de u_C et u_L respectivement sont :	1.5
	$U_{\rm Cm} = \frac{I_{\rm m}}{C_{\rm \omega}} = \frac{U_{\rm m}}{C_{\rm \omega} \sqrt{R^2 + \left(L_{\rm \omega} - \frac{1}{C_{\rm \omega}}\right)^2}} \text{ et } U_{\rm Lm} = L_{\rm \omega} I_{\rm m} = \frac{L_{\rm \omega} U_{\rm m}}{\sqrt{R^2 + \left(L_{\rm \omega} - \frac{1}{C_{\rm \omega}}\right)^2}}.$	
B-1	La période $T_C = S_h \times x = 0.5 \times 5, 6 = 2.8 \text{ ms}$; La valeur de $\omega_C = \frac{2\pi}{T_C} = \frac{2\pi}{2.8 \times 10^{-3}} = 2244 \text{ rad/s}.$	1.5
B-2	La valeur de $U_{Rm} = S_{V} \times y = 2 \times 3,9 = 7,8 \text{ V. Ainsi, la valeur de } I_{m} = \frac{U_{Rm}}{R} = \frac{7,8}{250} = 3,12 \times 10^{-2} \text{ A. La valeur de}$	2
	$U_{\text{Cm}}(\text{max}) = \frac{I_{\text{m}}}{C\omega_{\text{C}}} = \frac{3.12 \times 10^{-2}}{2244 \times 10^{-6}} = 13.9 \text{ V}$	
B-3	$\alpha_0 = 2\pi \frac{0}{1} = 2\pi \frac{0.3}{10} = 0.336 \text{ rad}$	1.5
C-1	On a : $U_{Lm} = L\omega I_m = \frac{L\omega U_m}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}$; U_{Lm} est maximale lorsque sa dérivée par rapport à ω est nulle. $\Rightarrow \frac{dU_{Lm}}{d\omega} = \frac{L\omega U_m}{d\omega}$	2.5
	$\sqrt{R^2 + \left(L_{\odot} - \frac{1}{C_{\odot}}\right)^2}$	
	$L U_{\rm m} \sqrt{R^2 + \left(L_{\odot} - \frac{1}{C_{\odot}}\right)^2} - L_{\odot} U_{\rm m} \frac{2\left(L_{\odot} - \frac{1}{C_{\odot}}\right)\left(L + \frac{1}{C_{\odot}^2}\right)}{\left[L_{\odot} - \frac{1}{C_{\odot}}\right]^2}$	
	$\frac{2\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}{[R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2]^2}; \frac{dU_{Lm}}{d\omega} = 0 \Rightarrow \sqrt{R^2 + \left(L\omega_L - \frac{1}{C\omega_L}\right)^2} - \omega \frac{2\left(L\omega_L - \frac{1}{C\omega_L}\right)\left(L + \frac{1}{C\omega_L}\right)}{2\sqrt{R^2 + \left(L\omega_L - \frac{1}{C\omega_L}\right)^2}} = 0$	
	$\Rightarrow R^2 + L^2 \omega_L^2 + \frac{1}{C^2 \omega_f^2} - 2\frac{L}{C} - L^2 \omega_L^2 + \frac{1}{C^2 \omega_f^2} = 0 R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{L}{C} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2} = 0 \Rightarrow R^2 + \frac{2}{C^2 \omega_f^2} - 2\frac{LC}{C^2 \omega_f^2$	
	$\frac{R^2C^2}{2} = \frac{1}{\omega_0^2} - \frac{1}{\omega_L^2} \iff \frac{1}{\omega_L^2} = \frac{1}{\omega_0^2} - \frac{R^2C^2}{2} = \frac{1}{\omega_0^2} [1 - \frac{R^2C^2\omega_0^2}{2}] \implies \omega_L = \frac{\omega_0}{\sqrt{1 - \frac{R^2C^2\omega_0^2}{2}}} = 2787 \text{ rad/s}.$	
C-2	On a tan $\varphi_L = \frac{L\omega_L - \frac{1}{C\omega_L}}{R} = \frac{0.16 \times 2787 - \frac{1}{10^{-6} \times 2787}}{250} = 0.348 \Rightarrow \varphi_L = +0.335 \text{ rad.}$	1.5
	On a tan $\phi_L = \frac{C\omega_L}{R} = \frac{10^{-6} \times 2787}{250} = 0.348 \Rightarrow \phi_L = +0.335 \text{ rad.}$ $U_{Lm}(max) = \frac{L\omega_L U_m}{\sqrt{R^2 + \left(L\omega_L - \frac{1}{C\omega_L}\right)^2}} = \frac{0.16 \times 2787 \times 8}{\sqrt{250^2 + \left(0.16 \times 2787 - \frac{1}{10^{-6} \times 2787}\right)^2}} = 13,47 \text{ V}$	
	$\sqrt{R^2 + \left(L\omega_L - \frac{1}{C\omega_L}\right)^2} \sqrt{250^2 + \left(0.16 \times 2787 - \frac{1}{10^{-6} \times 2787}\right)^2}$	
D	On trouve que $\varphi_L = -\varphi_C$, $U_{Cm}(max) = U_{Lm}(max)$	1
E-1	et que $\omega_L \times \omega_C = 2787 \times 2244 = 6254000 \approx \omega_0^2 = 2500^2 = 6250000 \text{ rad}^2/\text{s}^2$ L'expression de la puissance moyenne P consommée par le circuit est donnée par :	1
	$P = RI^{2} = \frac{1}{2} R I_{m}^{2} = \frac{RU_{m}^{2}}{2[R^{2} + \left(L_{\omega} - \frac{1}{C_{\omega}}\right)^{2}]}.$	
E-2a	La puissance P moyenne est maximale lorsque $\frac{dP}{dR} = 0$.	2.5
	$\frac{dP}{dR} = \frac{1}{2} \frac{U_m^2 [R^2 + \left(L_{\odot} - \frac{1}{C_{\odot}}\right)^2] - RU_m^2 \cdot 2R}{[R^2 + \left(L_{\odot} - \frac{1}{C_{\odot}}\right)^2]^2}; \text{ pour } R = R_1; \frac{dP}{dR} = \frac{1}{2} \frac{U_m^2 [\left(L_{\odot} - \frac{1}{C_{\odot}}\right)^2 - R_1^2]}{[R_1^2 + \left(L_{\odot} - \frac{1}{C_{\odot}}\right)^2]^2} = 0$	
	$\Rightarrow \left(L\omega - \frac{1}{C\omega}\right)^2 - R_1^2 = 0 \Rightarrow R_1 = \left L\omega - \frac{1}{C\omega}\right , \operatorname{car} R_1 > 0.$	
	$R_1 = \left \ 0.16 \times 500 \pi - \frac{1}{10^{-6} \times 500 \pi} \ \right = 385 \ \Omega. \ P_1 = \frac{R_1 U_m^2}{2[R_1^2 + R_1^2]} = \frac{R_1 U_m^2}{4R_1^2} = \frac{U_m^2}{4R_1} = \frac{8^2}{4.385} = 4.15 \times 10^{-2} \ W.$	
E-2b	Dans ce cas, $\tan \varphi_R = \frac{L\omega - \frac{1}{C\omega}}{R_1} = -1 \Rightarrow \varphi_R = -\frac{\pi}{4} \text{ rad.}$	1
	•	22