

Concours d'entrée (2022 – 2023)

Examen de chimie

Durée : 60 min 17 juillet 2022

Cette épreuve est constituée de deux exercices à choix multiples (QCM).

Chaque exercice est formé de 10 QCM.

- 1- Reporter vos réponses sur la grille de QCM sans les justifier.
- 2- À chaque question correspond 4 propositions a, b, c, d.
- 3- Pour chaque question, il existe une SEULE bonne réponse.
- 4- Choisir la bonne proposition et cocher la case correspondante à la lettre (a, b, c ou d) par un « X » dans la GRILLE associée à l'exercice.
- 5- Vous devez répondre à toutes les questions.
- 6- Chaque réponse correcte vous apporte 1 point.
- 7- L'usage de la calculatrice non programmable est autorisé.

Premier exercice (10 points) Acide chlorhydrique 23%

Une solution d'acide chlorhydrique est obtenue par dissolution du chlorure d'hydrogène HCl dans l'eau qui se dissocie totalement dedans selon la réaction d'équation :

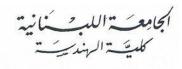
 $HCl_{(g)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + Cl^-_{(aq)}$

L'acide chlorhydrique est souvent utilisé comme régulateur de pH dans l'eau de piscine basique afin de régulariser le pH entre 7,2 et 7,6.

Données : Ke = 10^{-14} ; M _{HCl} = 36.5 g/mol ; ρ _(eau)=1.0 g/mL

Indicateur	Zone de virage	Changement de couleur		
Hélianthine	3,1-4,4	Rouge-jaune		
Bleu de bromothymol	6,0-7,6	Jaune- bleu		
Phénolphtaléine	8,2-10	Incolore-rose		
Rouge d'alizarine	10-12	Violet- jaune		

I. Vérification de l'indication de l'étiquette.


Afin de vérifier l'indication du fabricant, on dose cette solution commerciale (S) par une solution d'hydroxyde de sodium (Na $^+$ +HO $^-$) de concentration C $_b$ = 1 mol/L, tout en suivant la démarche suivante :

On remplit une éprouvette graduée de 10,0 mL, tarée à vide, par la solution (S), la balance indique la masse 10,5g.

- A- Le contenu de l'éprouvette est versé dans une fiole jaugée de 100 mL et complété par l'eau distillée jusqu'au trait de jauge puis agitée, on obtient la solution (S_d).
- B- On prélève 20,0 mL de la solution (S_d) qu'on verse dans un bécher, de 100 mL, placé sur un agitateur magnétique au-dessous de la burette graduée remplie par la solution d'hydroxyde de sodium.
- C- On verse dans le bécher un volume d'eau distillée de 30 mL et quelques gouttes d'un indicateur coloré acidobasique noté HIn.
- D- On place dans le bécher le barreau aimanté, on déclenche l'agitation et on verse dans le bécher 0,2 mL par 0,2 mL de la solution d'hydroxyde de sodium. Le volume à l'équivalence est : V_E = 13,2 mL.

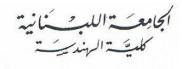
FACULTE DE GENIE

- 1- L'équation de la réaction support de titrage est :
 - a- $HCl + NaCl \rightarrow NaH + Cl_2$
 - b- $H_3O^+ + HO^- \rightleftarrows 2H_2O$
 - $c- H_3O^+ + HO^- \rightarrow 2H_2O$
 - d- $HCl + HO^- \rightleftharpoons H_2O + Cl^-$
- 2- Dans l'étape (C) l'ajout de l'eau distillée :
 - a- N'influe pas sur le volume V_E à l'équivalence.
 - b- Augmente le volume V_E à l'équivalence.
 - c- Diminue le volume V_E à l'équivalence.
 - d- Double le volume V_E à l'équivalence.
- L'indicateur coloré le plus convenable pour bien déterminer V_E est :
 - L'hélianthine
 - b- Le bleu de bromothymol
 - c- La phénolphtaléine
 - d- Le rouge d'alizarine
- À l'équivalence, la couleur de la solution titrée vire du :
 - a- Rouge au bleu
 - Jaune au bleu
 - Rose à l'incolore c-
 - d- Violet au jaune.
- La masse volumique de la solution (S) est :
 - $\rho = 1.5 \text{ g/mL}$
 - b- $\rho = 1.05 \text{ g/mL}$
 - $\rho = 1.5 \text{ kg/L}$ c-
 - $\rho = 0.15 \text{ g/mL}$
- La concentration de la solution titrée (S_d) est :
 - $C_{(Sd)} = 0.65 \text{ mol/L}$
 - $C_{(Sd)} = 0,66 \text{ mol/L}$
 - c- $C_{(Sd)} = 0,60 \text{ mol/L}$
 - d- $C_{(Sd)} = 0.67 \text{ mol/L}$
- Le pourcentage massique, de la solution commerciale (S), obtenu d'après le titrage est :
 - 22,90%
 - b- 22,94%
 - c- 22,98%
 - d- 23,38%

II. Utilisation du produit

La solution utilisée pour traiter l'eau d'une piscine, notée (S_0) , est obtenue en ajoutant de l'eau à la solution (S) dans les proportions en volume 70% d'eau pour 30% de (S). À l'eau d'une piscine de volume 30 m³ et de pH = 9, on ajoute 0,1 L de la solution (S_o).

- 8 La concentration de (So) est :
 - $C_{(So)} = 0.2 \text{ mol/L}.$
 - b- $C_{(So)} = 2.0 \text{ mol/L}$
 - c- $C_{(So)} = 2,2 \text{ mol/L}$
 - d- $C_{(So)} = 2.5 \text{ mol/L}$
- 9- La relation qui permet de déterminer le pH après cet ajout de 0,1 L de (So) est :


a- pH = 14 + log
$$\frac{0.3+0.1*C(S_0)}{30000.1}$$

a- pH = 14 + log
$$\frac{0.00001}{0.00001}$$

b- pH = 14 + log $\frac{0.3-0.1*\mathcal{C}(S_0)}{0.3-0.1*\mathcal{C}(S_0)}$

c- pH =
$$14 + \log \frac{0.3 - 0.1 * C(S_0)}{30.1}$$

FACULTE DE GENIE

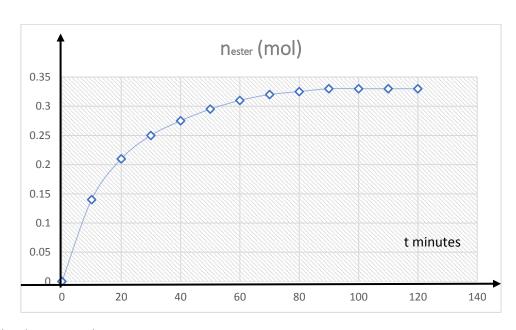
d- pH = 14 + log
$$\frac{0.3x0.1*\mathcal{C}(S_0)}{30000.1}$$

10- Le volume de (S_0) qu'il faut ajouter à l'eau de la piscine pour faire baisser son pH de pH = 9 à pH = 7,6 est :

- a- V = 0.1L
- b- 0.1L < V < 0.2L
- c-V = 0.2L
- d- 0.2L < V < 0.3L

Deuxième exercice (10 points) Un ester dans la framboise

Le méthanoate de 2-méthylpropyle a une odeur qui évoque celle de la framboise et possède la formule semi-développée :


peut être obtenu par une réaction lente entre deux réactifs A et B. Le réactif A est un acide carboxylique.

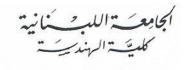
À un instant t = 0, on mélange 0,5 mol du réactif A et 0,5 mol du réactif B. On ajoute une petite quantité d'acide sulfurique et on maintient le milieu réactionnel à une température convenable.

Le volume total du mélange réactionnel est V= 65 mL.

On détermine toutes les 10 min la quantité n (mol) de méthanoate de 2-méthylpropyle formé.

	t(min)	0	10	20	30	40	50	60	70	80	90	100	110	120
Ī	n (mol)	0	0.14	0.21	0.25	0.275	0.295	0.31	0.32	0.325	0.33	0.33	0.33	0.33

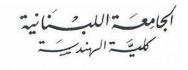
1- L'équation de cette réaction est :


- a- $CH_3 COOH + HO CH_2 CH(CH_3) CH_3 \rightleftarrows CH_3 COO CH_2 CH(CH_3) CH_3 + H_2O$
- b- $HCOOH+ HO-CH_2-CH(CH_3)$ $-CH_3 \rightleftarrows HCOO-CH_2-CH(CH_3)-CH_3 + H_2O$
- c- $HCOOH+ HO-CH_2-CH_2-CH_3 \rightleftharpoons HCOO-CH_2-CH_2-CH_3 + H_2O$
- d- $HCOOH+ HO-CH_2-CH(CH_3)$ — $CH_2-CH_3 \rightleftarrows HCOO-CH_2-CH(CH_3)$ — $CH_2-CH_3 + H_2O$
- 2- Les réactifs A et B utilisés, au cours de cette synthèse sont :

Faculté de génie - Université Libanaise

Toutes les sessions d'examens d'entrée sont disponibles sur www.ulfg.ul.edu

FACULTE DE GENIE


- a- A- Acide méthanoïque, B- 3-méthylpropan-1-ol
- b- A- Acide éthanoïque, B- 2- méthylpropanol
- c- A- Acide méthanoïque, B- 2-méthylpropan-2-ol
- d- A- Acide méthanoïque, B- 2-méthylpropan-1-ol
- 3- À partir de la courbe n ester = f(t) on tire deux caractéristiques de la réaction d'estérification :
 - a- Lente et totale
 - b- Lente et athermique
 - c- Lente et catalysée par l'acide sulfurique
 - d- Lente et limitée
- 4- La vitesse instantanée de la réaction de formation du méthanoate de 2-méthylpropyle :
 - a- Est constante
 - b- Diminue au cours du temps
 - c- Atteigne le maximum à t = 20 min
 - d- Devient nulle lorsque l'un des réactifs disparait totalement.
- 5- Le facteur responsable de la variation de la vitesse de formation de l'ester est :
 - a- Le temps de réaction
 - b- La diminution de la concentration de l'acide
 - c- La diminution concentration de l'alcool
 - d- La diminution de la concentration de l'acide et celle de l'alcool.
- 6- La vitesse de la réaction de formation de l'ester à t = 100 min est :
 - a- Nulle
 - b- Croissante
 - c- Décroissante
 - d- Maximale.
- 7- Le rendement de cette réaction d'estérification est :
 - a- R = 0.33
 - b- R = 0.60
 - c-R = 0.66
 - d-R=1
- 8- La constante d'équilibre de cette réaction d'estérification est :
 - a- Kc = 0.4
 - b- Kc = 4.0
 - c-Kc = 4.4
 - d- Kc = 5.5

Pour la synthèse industrielle du méthanoate de 2-méthylpropyle on réalise les mélanges essais suivants, en présence d'une petite quantité d'acide sulfurique et avec une température convenable. Les résultats correspondants sont :

Mélange	Acide mol	Alcool mol	Ester mol	Eau mol	Rendement
1	1	1	-		R_1
2	1	1		solvant	R_2
3	2	1	-	-	R_3
4	1	3	-	-	R_4

- 9- Le système s'établit dans le sens de l'estérification dans :
 - a- Les quatre mélanges
 - b- Les mélanges 1, 3 et 4
 - c- Seulement le mélange 1
 - d- Seulement le mélange 2.

10- Les rendements sont classés par ordre croissant tel que :

- a- R1<R2<R3<R4
- b- R3<R2<R1<R4
- c- R2<R1<R3<R4
- d- R4<R3<R2<R1

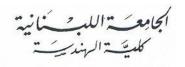
Solution de Chimie

Cette épreuve est constituée de deux exercices à choix multiples (QCM). Chaque exercice est formé de 10 QCM.

Cette épreuve est constituée de deux exercices à choix multiples (QCM).

Chaque exercice est formé de 10 QCM.

- 8- Reporter vos réponses sur la grille de QCM sans les justifier.
- 9- λ chaque question correspond 4 propositions a, b, c, d.
- 10-Pour chaque question, il existe une SEULE bonne réponse.
- 11- Choisir la bonne proposition et cocher la case correspondante à la lettre (a, b, c ou d) par un « X » dans la GRILLE associée à l'exercice.
- 12-Vous devez répondre à toutes les questions.
- 13-Chaque réponse correcte vous apporte 1 point.
- 14-L'usage de la calculatrice non programmable est autorisé.


Grille des réponses de l'exercice -1

QCM N°	а	b	С	d
1		A. 141	100	
2		1000		
3				
4				
5	1 7			
6	- N			
7				
8				
9				
10				

Grille des réponses de l'exercice -2

QCM N°	а	b	С	d
1				
2				
3				
4				
5				
6				
7				
8				

9		
10		

Premier exercice (10 points) Acide chlorhydrique 23%

Une solution d'acide chlorhydrique est obtenue par dissolution du chlorure d'hydrogène HCl dans l'eau qui se dissocie totalement dedans selon la réaction d'équation :

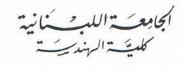
$$HCl_{(g)} + H_2O_{(1)} \rightarrow H_3O^+_{(aq)} + Cl^-_{(aq)}$$

L'acide chlorhydrique est souvent utilisé comme régulateur de pH dans l'eau de piscine basique afin de régulariser le pH entre 7,2 et 7,6.

Données : Ke = 10^{-14} ; M _{HCl} = 36,5 g/mol ; ρ _(eau)=1,0 g/mL

Indicateur	Zone de virage	Changement de couleur		
Hélianthine	3,1-4,4	Rouge-jaune		
Bleu de bromothymol	6,0-7,6	Jaune- bleu		
Phénolphtaléine	8,2-10	Incolore-rose		
Rouge d'alizarine	10-12	Violet- jaune		

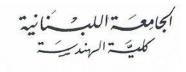
1- Vérification de l'étiquette.


Afin de vérifier l'indication du fabricant, on dose cette solution commerciale (S) par une solution d'hydroxyde de sodium (Na^++HO^-) de concentration $C_b=1$ mol/L, tout en suivant la démarche suivante :

On remplit une éprouvette graduée de 10,0 mL, tarée à vide, par la solution (S), la balance indique la masse 10,5g.

- E- Le contenu de l'éprouvette est versé dans une fiole jaugée de 100 mL et complété par l'eau distillée jusqu'au trait de jauge puis agitée, on obtient la solution (S_d).
- F- On prélève 20,0 mL de la solution (S_d) qu'on verse dans un bécher, de 100 mL, placé sur un agitateur magnétique au-dessous de la burette graduée remplie par la solution d'hydroxyde de sodium.
- G- On verse dans le bécher un volume d'eau distillée de 30 mL et quelques gouttes d'un indicateur coloré acido-basique noté HIn.
- H- On place dans le bécher le barreau aimanté, on déclenche l'agitation et on verse dans le bécher 0.2 mL par 0.2 mL de la solution d'hydroxyde de sodium. Le volume à l'équivalence est : $V_E = 13.2 \text{ mL}$.
- 8- L'équation de la réaction support de titrage est :
 - e- $HCl + NaCl \rightarrow NaH + Cl_2$
 - $f- H_3O^+ + HO^- \rightleftarrows 2H_2O$
 - g- $H_3O^+ + HO^- \rightarrow 2H_2O$
 - $h-HCl+HO- \rightleftarrows H_2O+Cl^-$
- 9- Dans l'étape (C) l'ajout de l'eau distillée :
 - e- N'influe pas sur le volume V_E à l'équivalence.
 - f- Augmente le volume V_E à l'équivalence.
 - g- Diminue le volume V_E à l'équivalence.
 - h- Double le volume V_E à l'équivalence.

FACULTE DE GENIE


- 10- L'indicateur coloré le plus convenable pour bien déterminer V_E est :
 - e- L'hélianthine
 - f- Le bleu de bromothymol
 - g- La phénolphtaléine
 - h- Le rouge d'alizarine
- 11- À l'équivalence la couleur de la solution titrée vire du :
 - e- Rouge au bleu
 - f- Jaune au bleu
 - g- Rose à l'incolore
 - h- Violet au jaune.
- 12- La masse volumique de la solution (S) est :
 - e- $\rho = 1.5 \text{ g/mL}$
 - f- $\rho = 1.05 \text{ g/mL}$
 - g- $\rho = 1.5 \text{ kg/L}$
 - h- $\rho = 0.15 \text{ g/mL}$
- 13- La concentration de la solution titrée (S_d) est :
 - e- $C_{(Sd)} = 0.65 \text{ mol/L}$
 - f- $C_{(Sd)} = 0,66 \text{ mol/L}$
 - g- $C_{(Sd)} = 0,60 \text{ mol/L}$
 - h- $C_{(Sd)} = 0.67 \text{ mol/L}$
- 14- Le pourcentage massique, de la solution commerciale(S), obtenu d'après le titrage est :
 - e- 22,90%
 - f- 22,94%
 - g- 22,98%
 - h- 23,38%

II- Utilisation du produit

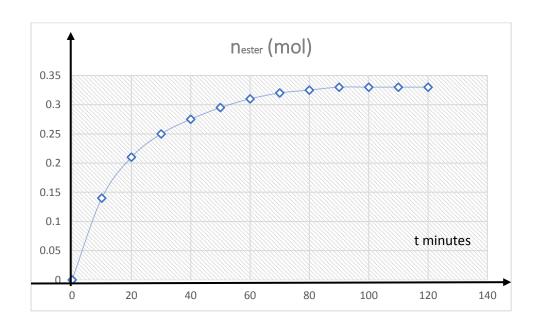
La solution utilisée pour traiter l'eau d'une piscine, notée (S_0) , est obtenue en ajoutant de l'eau à la solution (S) dans les proportions en volume 70% d'eau pour 30% de (S). À l'eau d'une piscine de volume 30 m³ et de pH = 9, on ajoute 0,1 L de la solution (S_0) .

- 8 La concentration de (S_o) est :
 - e- $C_{(So)} = 0.2 \text{ mol/L}.$
 - f- $C_{(So)} = 2.0 \text{ mol/L}$
 - g- $C_{(So)} = 2.2 \text{ mol/L}$
 - h- $C_{(So)} = 2.5 \text{ mol/L}$
 - 9- La relation qui permet de déterminer le pH après cet ajout de 0,1 L de (So) est :
 - e- pH = $14 + \log \frac{0.3 + 0.1xC_{(S_0)}}{300001}$
 - f- pH = $14 + \log \frac{0.3 0.1 \times C(S_0)}{2000000}$
 - g- pH = 14 + log $\frac{0.3 0.1 \times C(S_0)}{20.1}$
 - h- pH = 14 + log $\frac{0.3x0.1x\mathcal{C}_{(S_0)}}{30000.1}$

- 10- Le volume de (S_0) qu'il faut ajouter à l'eau de la piscine pour faire baisser son pH de pH = 9 à pH = 7,6 est :
 - e- V = 0.1L
 - f- 0.1L < V < 0.2L
 - g-V = 0.2L
 - h- 0.2L < V < 0.3L

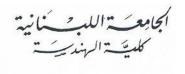
Deuxième exercice (10 points) Un ester dans la framboise

Le méthanoate de 2-méthylpropyle a une odeur qui évoque celle de la framboise. Le méthanoate de 2-méthylpropyle de formule semi-développée :



peut être obtenu par une réaction lente entre deux réactifs A et B. Le réactif A est un acide carboxylique.

À un instant t = 0, on mélange 0,5 mol du réactif A et 0,5 mol du réactif B. On ajoute une petite quantité d'acide sulfurique et on maintient le milieu réactionnel à une température convenable. Le volume total du mélange réactionnel est V = 65 mL.


On détermine toutes les 10 min la quantité n (mol) de méthanoate de 2-méthylpropyle formé.

t(min)	0	10	20	30	40	50	60	70	80	90	100	110	120
n (mol)	0	0.14	0.21	0.25	0.275	0.295	0.31	0.32	0.325	0.33	0.33	0.33	0.33

FACULTE DE GENIE



- 2. L'équation de cette réaction est :
 - a- $CH_3 COOH + HO CH_2 CH(CH_3) CH_3 \rightleftarrows CH_3 COO CH_2 CH(CH_3) CH_3 + H_2O$
 - b- $HCOOH+ HO-CH_2-CH(CH_3) CH_3 \rightleftarrows HCOO-CH_2-CH(CH_3)- CH_3 + H_2O$
 - c- $HCOOH+ HO-CH_2-CH_2-CH_3 \rightleftharpoons HCOO-CH_2-CH_2-CH_3 + H_2O$
 - d- $HCOOH+ HO-CH_2-CH(CH_3)$ — $CH_2-CH_3 \rightleftarrows HCOO-CH_2-CH(CH_3)$ — $CH_2-CH_3 + H_2O$
- 3. Les réactifs A et B utilisés, au cours de cette synthèse sont :
 - a- A- Acide méthanoïque, B- 3-méthylpropan-1-ol
 - b- A- Acide éthanoïque, B- 2-méthylpropanol
 - c- A- Acide méthanoïque, B- 2-méthylpropan-2-ol
 - d- A- Acide méthanoïque, B- 2-méthylpropan-1-ol
- 4. À partir de la courbe $n_{ester} = f(t)$ on tire deux caractéristiques de la réaction d'estérification :
 - a- Lente et totale
 - b- Lente et athermique
 - c- Lente et catalysée par l'acide sulfurique
 - d- Lente et limitée
- 5. La vitesse instantanée de la réaction de formation du méthanoate de 2-méthylpropyle :
 - a- Est constante
 - b- Diminue au cours du temps
 - c- Atteigne le maximm à t = 20 min
 - d- Devient nulle lorsque l'un des réactifs disparait totalement.
- 6. Le facteur responsable de la variation de la vitesse de formation de l'ester est :
 - a- Le temps de réaction
 - b- La diminution de la concentration de l'acide
 - c- La diminution concentration de l'alcool
 - d- La diminution de la concentration de l'acide et celle de l'alcool.
- 7. La vitesse de la réaction de formation de l'ester à t = 100 min est :
 - a- Nulle
 - b- Croissante
 - c- Décroissante
 - d- Maximale.
- 8. Le rendement de cette réaction d'estérification est :
 - a- R = 0.33
 - b-R = 0.60
 - c-R = 0.66
 - d- R = 1
- 9. La constante d'équilibre de cette réaction d'estérification est :
 - a- Kc = 0.4
 - b- Kc = 4.0
 - c- Kc = 4,4
 - d- Kc = 5.5

Pour la synthèse industrielle du méthanoate de 2-méthylpropyle on réalise les mélanges essais suivants, en présence d'une petite quantité d'acide sulfurique et avec une température convenable. Les résultats correspondants sont :

Mélange	Acide	Alcool	Ester mol	Eau	Rendement
	mol	mol		mol	
1	1	1	-	-	R_1
2	1	1	-	solvant	R_2
3	2	1	-	-	R_3
4	1	3	-	-	R_4
		M			

- 10. Le système s'établit dans le sens de l'estérification dans :
 - a- Les quatre mélanges
 - b- Les mélanges 1, 3 et 4
 - c- Seulement le mélange 1
 - d- Seulement le mélange 2.
- 11. Les rendements sont classés par ordre croissant tel que :
 - a- $R_1 < R_2 < R_3 < R_4$
 - b- $R_3 < R_2 < R_1 < R_4$
 - $c-R_2 < R_1 < R_3 < R_4$
 - $d- R_4 < R_3 < R_2 < R_1$