2021-2022	Tronc Commun	Année 2 - Sem. 3
Math 207	Analyse III	Obligatoire
Crédits : 5	Enseignants: Dr. Wissam Karam, Dr. Maha Monla	Français
Nombre d'heures : 66 h	Période : Octobre- Février	

Description:

Séries numériques ; Suites de fonctions, convergence simple, convergence uniforme ; Séries de fonctions, convergence simple, uniforme et normale ; Séries entières, rayon et intervalle de convergence, séries de Taylor et de Maclaurin, résolution d'équations différentielles ; Séries de Fourier ; Intégrales généralisées dépendant d'un paramètre ; Equations différentielles ; Systèmes différentiels ; Introduction aux équations aux dérivées partielles.

Acquis de la formation

L'étudiant apprend dans ce cours l'analyse fonctionnelle pour qu'il soit capable de bien formuler et de résoudre mathématiquement les problèmes d'ingénierie.

Contenu

Séries numériques :

- Définitions
- Convergence. Divergence.
- Critères de comparaison.
- Séries de références.
- Convergence absolue. Semi-convergence.

Suites et Séries de fonctions :

- Définitions
- Convergence Simple, uniforme et normale.

Séries entières :

- Définitions
- Critères de convergence
- Rayon et domaine de convergence
- Développement en série entière
- Application des séries entières aux équations différentielles

Séries de Fourier :

- Définitions
- Convergence : Théorèmes de Dirichlet
- Développement en séries de Fourier.
- Egalite de Parseval

Intégrales généralisées dépendant d'un paramètre

- Continuité, dérivabilité, convergence normale

Equations différentielles :

Equations différentielles à variables séparées.

- Equations homogènes et non homogènes
- Equations de Bernoulli, de Riccati, Clairaut
- Equations différentielles Exacte et non exacte
- Equations différentielles linéaires de premier ordre
- Equations différentielles de second ordre

Système d'équations différentielles

- Système différentiel linéaire homogène
- Système différentiel linéaire non homogène
- Systèmes différentiels linéaires à coefficients constants, résolution en utilisant les valeurs et les vecteurs propres, résolution à l'aide de l'exponentielle de la matrice résolvante
- Introduction aux équations aux dérivées partielles

Bibliographie

Analyse- Classes préparatoires- Pierre Vigoureux- Cours et exercices- Ellypses. Analyse 2ème année- Exercices corrigés- DUNOD

Méthode d'évaluation:

Examen partiel Examen final.

2021-2022	Common Trunk	Year 2 - Sem. 3
Math 207	Analysis III	Mandatory
Credits : 5	Instructors: Dr. Wissam Karam, Dr, Hussein Bazzi	English
Total hours: 66 h	Period: October- February	

Description

Numerical series; Sequence of functions, pointwise and uniform convergence; Series of functions, pointwise, uniform and normal convergence; Power series, radius and interval of convergence, Taylor and Maclaurin series, solving differential equations; Fourier series; Improper integrals depending on a parameter; Differential equations; Linear systems of differential equations; Partial Differential equations.

Learning outcomes:

In this course, the student learns functional Calculus so that he is able to formulate & solve engineering problems mathematically

Content

-

Numerical series:

- Definitions
- Convergence. Divergence.
- Comparison test.
- Special series.
- Absolute convergence. Conditional convergence.

Sequences & series of functions:

- Definitions
- Simple convergence, uniform & normal convergence

Power series:

- Definitions
- Criterion of convergence
- Radius and domain of convergence
- Expansion into Power series
- Resolution of differential equations using power series.

Fourier series:

- Definitions
- Convergence: Theorem of Dirichlet
- Expansion of a function in a Fourier series
- Parseval equality

Improper integrals depending on a parameter

Continuity, derivability, normal convergence

Differential Equations:

- Separable differential Equations.
- Homogeneous Equations and Nonhomogeneous Equations
- Bernoulli, Riccati and Clairaut Equations
- Exact and non exact Differential Equations: Integrating factor.
- Linear Differential Equations of order 1
- Linear Differential Equations of order 2

Systems of differential equations

- Homogeneous linear system of differential equations
- Nonhomogeneous linear system of differential equations
- Solving matrix functions
- Linear system of differential equations with constant coefficients

Partial Differential equations

Bibliography

Analyse- Classes préparatoires- Pierre Vigoureux- Cours et exercices- Ellypses. Analyse 2ème année- Exercices corrigés- DUNOD

Evaluation Method:

Partial Exam Final Exam